Conductive molecular silicon.

نویسندگان

  • Rebekka S Klausen
  • Jonathan R Widawsky
  • Michael L Steigerwald
  • Latha Venkataraman
  • Colin Nuckolls
چکیده

Bulk silicon, the bedrock of information technology, consists of the deceptively simple electronic structure of just Si-Si σ bonds. Diamond has the same lattice structure as silicon, yet the two materials have dramatically different electronic properties. Here we report the specific synthesis and electrical characterization of a class of molecules, oligosilanes, that contain strongly interacting Si-Si σ bonds, the essential components of the bulk semiconductor. We used the scanning tunneling microscope-based break-junction technique to compare the single-molecule conductance of these oligosilanes to those of alkanes. We found that the molecular conductance decreases exponentially with increasing chain length with a decay constant β = 0.27 ± 0.01 Å(-1), comparable to that of a conjugated chain of C═C π bonds. This result demonstrates the profound implications of σ conjugation for the conductivity of silicon.

منابع مشابه

Silicon-graphene conductive photodetector with ultra-high responsivity

Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly a...

متن کامل

Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume.

Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint ...

متن کامل

Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulation...

متن کامل

Coupled simulation of carrier transport and electrodynamics: the EMC/FDTD/MD technique

In order to understand the response of conductive materials to high-frequency electrical or optical excitations, the interplay between carrier transport and electrodynamics must be captured. We present our recent work on developing EMC/FDTD/MD, a self-consistent coupled simulation of semiclassical carrier transport, described by ensemble Monte Carlo (EMC), with full-wave electrodynamics, descri...

متن کامل

Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electroche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 10  شماره 

صفحات  -

تاریخ انتشار 2012